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ABSTRACT: With the advent of PCR-based STR typing systems,
mixed samples can be separated into their individual DNA profiles.
Quantitative peak information can help in this analysis. However,
despite such advances, forensic mixture analysis still remains a la-
borious art, with the high cost and effort often precluding timely
reporting.

We introduce here a new automated approach to resolving foren-
sic DNA mixtures. Our linear mixture analysis (LMA) is a straight-
forward mathematical approach that can integrate all the quantita-
tive PCR data into a single rapid computation. LMA has application
to diverse mixture problems. As demonstrated here on laboratory
STR data, LMA can assess the quality and utility of its solutions.
Such rapid and robust methods for computer-based analysis of
DNA mixtures may help in reducing crime.

KEYWORDS: forensic science, DNA typing, STR, DNA mix-
ture, DNA database, criminal casework, mathematics, linear alge-
bra, least squares, heuristic algorithm

In forensic science, DNA samples are often derived from more
than one individual. In such cases, key objectives include elucidat-
ing or confirming a mixed DNA sample’s component DNA profiles,
and determining the mixture ratios. Current manual qualitative peak
analysis of mixed DNA samples is slow, tedious, and expensive.
These difficulties can generate considerable delay in the casework
analysis of forensic DNA mixtures, underscored by the current USA
backlog comprised of over 100 000 unanalyzed rape kits.

Under appropriate laboratory conditions, STR peak data can be
quantitatively analyzed. Such quantitative approaches have
spawned heuristic (1) and computer-based (2,3) methods that can
potentially resolve these complex data. These statistical computer
programs typically analyze each STR locus separately, and may re-
quire human intervention when combining the locus results into a
complete solution.

We have developed a quantitative analysis method that repre-
sents the mixture problem as a linear matrix equation. We call our
approach “Linear Mixture Analysis,” or “LMA.” Unlike previous
methods, the mathematical LMA model uses STR data from all the
loci simultaneously for greater robustness. The linear mathematics
permits rapid computer calculation and provides a framework for
statistical analysis. An associated error analysis can measure the
quality of the overall solution, as well as the utility of each con-
tributing locus.

In this paper, we introduce the linear LMA model, and then pro-
vide some illustrative examples. We describe several problem for-
mulations, each one based on a particular subset of data available
to the examiner. We then focus on laboratory data analysis results
for one important mixture problem before extending the method to
other analyses. We conclude with some observations on the poten-
tial applications of LMA.

Linear Model

In the PCR amplification of a mixture, the amount of each PCR
product scales in rough proportion to relative weighting of each
component DNA template. This holds true whether the PCRs are
done separately, or combined in a multiplex reaction. Thus, if two
DNA samples A and B are in a PCR mixture with relative concen-
trations weighted as wA and wB (0 � wA � 1, 0 � wB � 1, wA �
wB � 1), their corresponding signal peaks after detection will gen-
erally have peak quantitations (height or area) showing roughly the
same proportion. Therefore, by observing the relative peak propor-
tions, one can estimate the DNA mixture weighting. Note that mix-
ture weights and ratios are interchangeable, since the mixture
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To mathematically represent the linear effect of the DNA sample
weights (wA, wB, wC,. . .), we combine all the locus data into a sin-
gle linear matrix equation:

d � G � w

Here, column vector d describes the mixture profile’s peak quanti-
tation data, matrix G represents the genotypes (column j gives the
alleles for individual j), and w is the weight column vector that re-
flects the relative proportions of template DNA or PCR product.
The quantitative data profile d is the product of genotype matrix G
and the weight vector w. (A more complete data description would
add an error term e; expected values suffice for our purposes.)

More precisely, we can write the vector/matrix equation d � G �
w for mixture coupling (of individuals and loci) as coupled linear
equations that include the relevant data:

dik � ∑
j

gijkwj

where for locus i, individual j, and allele k:

• dik is the allele k proportion in the observed mixture data at lo-
cus i;
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• gijk is the genotype of individual j at locus i in allele k, taking
values 0 (no contribution), 1 (heterozyote or hemizygote con-
tribution), or 2 (homozygote contribution), though with
anomalous chromosomes other integer values are possible; and

• wj is the weighting in the mixture of individual j’s DNA
proportion.

Illustrative Examples

This tutorial section motivates the use of vectors and matrices in
modeling STR mixtures. We first illustrate the coupling of DNA
mixture weights with relative peak quantities. Suppose that there
are three individuals A, B, C represented in a mixture, where 50%
of the DNA is derived from individual A, 25% from individual B,
and 25% from individual C. Mathematically, this corresponds to a
weighting of wA � 0.5, wB � 0.25, and wC � 0.25. Further sup-
pose that at one locus the genotypes are:

A has allele 1 and allele 2,
B has allele 1 and allele 3, and
C has allele 2 and allele 3.

This information, and the predicted peak quantities, are laid out in
Table 1.

The Table 1 information can be connected via the linear vec-
tor/matrix equation:

� � � �� �� � � �� � � �
Representing each allele as a position in a column vector, we have
the linear relationship:

� � � �� � � � � �� � � �
which is the mathematical expression of Table 1. Note that the sum
of alleles in each allele column vector (whether mixture or individ-
ual) is normalized to equal two, the number of alleles present.

With multiple loci, the weight vector w is identical across all the
loci, since that is the underlying chemical mixture in the DNA tem-
plate. This coupling of loci can be represented in the linear equa-
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tions by extending the column vectors d and G with more allele in-
formation for additional loci.

To illustrate this coupling of DNA mixture weights across mul-
tiple loci, we add a second locus to the three individual mixture
above. At Locus 2, suppose that the genotypes are:

A has allele 1 and allele 2,
B has allele 2 and allele 3, and
C has allele 3 and allele 4.

We can combine this vector information via the partitioned matrix
equation:

� �� �� �� � � �� � � �

Representing each allele as a position in a column vector, we have:

� �� �� � � � � ��� � �

Multiple loci produce more data and provide greater confidence in
estimates computed from these linear equations.

Problem Formulations

Given partial information about equation d � G � w, other ele-
ments can be computed by solving the equation. Cases include:

• When G and w are both known, then the data profile d can be
predicted. This is useful in search algorithms.

• When G and d are both known, then the weights w can be com-
puted. This is useful in confirming a suspected mixture, and in
search algorithms.

• When d is known, inferences can be made about G and w, de-
pending on the prior information available (such as partial
knowledge of G). This is useful in human identification appli-
cations.

The DNA mixture is resolved in different ways, depending on the
case.

We assume throughout that the mixture profile data vector d has
been normalized at each locus. That is, for each locus, let NumAl-
leles be the number of alleles found in an individual’s genotype
(typically NumAlleles � 2, one for each chromosome). For each
allele element of the locus quantitation data, multiply by NumAl-
leles, and divide by the sum (over the observed alleles) of all the
quantitation values for that locus. Then, the sum of the normalized
locus quantitation data is NumAlleles, which totals 2 in the illus-
trative example above.

Resolving DNA mixtures using LMA entails: (a) obtaining DNA
profile data that include a mixed sample, (b) representing the data in
a linear equation, (c) deriving a solution from the linear equation,
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TABLE 1—The relative data quantity is calculated for each allele at the
locus as shown. For example, allele 1’s relative data value of 0.75 is
calculated from (a) the genotype values of <1, 1, 0> (i.e., the allele is

<present, present, absent>) at allele 1 for individuals A, B, and C, and
(b) the individuals’ DNA mixture weight contributions of <0.50, 0.25,

0.25>. The computation is performed by computing the inner product of
these two vectors as (1 � 0.50) � (1 � 0.25) � (0 � 0.25) � 0.75.

Individuals
A B C

Genotypes G

Alleles Data d 1, 2 1, 3 2, 3

1 0.75 � 1 1 0
2 0.75 1 0 1
3 0.50 0 1 1

0.50 0.25 0.25
wA wB wC

Weights w
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and (d) resolving the DNA mixture from the solution. The LMA ap-
proach is illustrated in the following problem formulations.

Determining Mixture Weights

First consider the case where all the genotypes G and the mixture
data d are known, and the mixture weights w need to be determined.
This problem is resolved by solving the linear equations d � G � w
for w using a least squares matrix division method. One standard
method is linear regression (4), which is often implemented using
singular value decomposition (SVD) (5). In the MATLAB pro-
graming language, w can be estimated as:

w � �
G
d

�

using the built-in matrix division operation “\”. With full rank ma-
trices, matrix multiplication via the normal equations computes the
weights as:

w � (GT � G)�1 � GT � d

Others have computed mixture weights by minimizing parameters
at single loci (3). From the LMA perspective, this pioneering work
essentially minimizes at a single locus the sum of squares deviation
||d � G � w||2 over w for each feasible integer-valued genotype ma-
trix G. LMA improves on such earlier search methods by provid-
ing a mathematical basis that can use the data from all the loci 
simultaneously in a rapid numerically computed global minimiza-
tion. Moreover, LMA permits the genotype matrix entries to as-
sume any possible value, and not just integers.

Analogous mixture problems occur in other fields, and are simi-
larly modeled using linear matrix equations. In chemometrics, the
approach is termed “multivariate calibration” (MC) (6). These MC
methods are quite different from computing genotypes (and mix-
ture weights) from the data. For example, MC finds real-valued so-
lutions but genotypes are whole numbers; calibration exploits sig-
nal continuity whereas locus patterns contribute combinatorially;
and MC methods rely on multiple samplings whereas (with limited
forensic samples) mixture data arise from a single multiplex PCR
experiment. Therefore, our methods must be tailored to the needs
of the STR mixture data, as described next.

Determining Genotype Profiles

Consider now the case of two individuals A and B where one of
the two genotypes (say, A) is known, the mixture weights w are
known, and the quantitative mixture data profile d is available. Ex-
pand d � G � w in this case as:

d � wA�gA � wB�gB

where gA and gB are the genotype column vectors of individuals A
and B, and wA and wB � (1 � wA) are their mixture weights. Then,
to resolve the genotype, we can algebraically rewrite this equation
as:

gB � (d � wA�gA)/wB

or, equivalently, as:

gB � (d � wA�gA)/(1 � wA)

and then solve for gB by vector arithmetic. The computed gB is the
normalized difference of the mixture profile minus a fraction of A’s
genotype. The accuracy of the solution increases with the number
of loci used, and the quality of the quantitative data. Typically,
however, the mixture weights w are not known.

Consider now the critical case of making inferences about the
genotype matrix G starting from a mixture data profile d. This case
has practical applications for forensic science. In one typical sce-
nario, a stain from a crime scene may contain a DNA mixture from
the victim and an unknown individual, the victim’s DNA is avail-
able, and the investigator would like to connect the unknown indi-
vidual’s DNA profile with a candidate perpetrator. This scenario
typically occurs in rape cases. The perpetrator may be a specific
suspect, or the investigator may wish to check the unknown indi-
vidual’s DNA profile against a DNA database of possible candi-
dates. If the mixture weight wA were known, then the genotype gB
could be computed immediately from the vector difference opera-
tion of the preceding paragraph.

Heuristic Search Algorithm: Mixture Deconvolution

Since wA is not known, one workable approach is to search for
the best weight w in the [0,1] interval that satisfies additional con-
straints on the problem. By setting wA equal to this best w, we can
compute the genotype g(wA) as a function of this optimized wA
value, and derive gB � g(wA). A suitable constraint is the prior
knowledge of the form that possible solution genotype vectors g
can take. It is known that solutions must have a valid genotype sub-
vector at each locus (e.g., having alleles taking on values 0, 1 or 2,
and summing to 2). One may also consider null alleles, corre-
sponding to failed PCR amplifications. This knowledge can be
translated into a heuristic function of g(w) which evaluates each
candidate genotype solution g against this criterion. The result of
this “mixture deconvolution” algorithm is a computed genotype gB
and the mixture weights w.

The heuristic we apply is a function of the unknown weight w,
the observed data profile d, and the known genotype gA. Since d
and gA are fixed for any given problem, in this case the function de-
pends only on the optimization variable w. For any given w in (0,1),
compute the vector:

g(w) � (d � w � gA)/(1 � w).

Then, at each locus, compute and record the deviation devlocus

(g(w)).
The devlocus function at one locus is defined as:

• Assume the genotype comprises one allele. Compute the devi-
ation by finding the index of the largest peak, and forming a
vector oneallele that has the Value 2 at this index and is 0 else-
where. Let dev1 be the sum of squares difference between
g(w) and oneallele.

• Assume the genotype comprises two alleles. Compute the de-
viation by finding the index of the two largest peaks, and form-
ing a vector twoallele that has the Value 1 at each of these two
indices and is 0 elsewhere. Let dev2 be the sum of squares dif-
ference between g(w) and twoallele.

• Return the the lesser of the two deviations as minimum (dev1,
dev2).

To compute dev(g(w)), we sum the component devlocus(g(w)) at
each locus. That is, the heuristic function is the scalar value

dev(g(w)) � ∑
loci

devlocus(g(w))

We can appropriately optimize (e.g., minimize or detect local min-
imum peaks for) this function over w in [0, 1] to find wA, and esti-
mate gB from the computed g(wA). If desired, the summation terms
can be normalized to reflect alternative weightings of the loci or al-



leles, e.g., based on variance. One useful reweighting, (1 �
w)2�dev(g(w)), is derived from the data error. Other heuristic func-
tions can be used that reflect reasonable constraints on the geno-
type vectors (3).

To assess the quality of the computed STR profile, we can use in-
formation from the heuristic search. Rule checking can identify po-
tentially anomalous allele calls, particularly, when peak quantities
or sizes do not conform to expectations (7). Quality measures can
be computed on the genotypes, which may suggest problematic
calls even when no rule has fired. A most useful quality score in our
mixture analysis is the deviation dev(gB) of the computed genotype.
Low deviations indicate a good result, whereas high scores suggest
a poor result. It may be helpful to partition the deviations by locus,
using the locus deviation function devlocus(gB). When a locus has an
unusually high deviation, it can be removed from the profile, and the
resulting partial profile then used for human identity matching.

Data Results

We analyzed two anonymous human DNA samples (A and B)
both individually and in different mixture proportions (1:9, 3:7,
5:5, 7:3, 9:1). We PCR amplified the samples on a PCT-100 ther-
mocycler (MJ Research, Waltham, MA) using the ten STR locus
SGMplus multi-mix panel (PE BioSystems, Foster City, CA). We
then size separated the fluorescently labeled PCR products with in-
ternal size standards on an ABI/310 Genetic Analyzer capillary
electrophoresis instrument (PE Biosystems). Our manual Gene-
Scan analysis included comparison with allelic ladder runs for al-
lelic size designation, and recording of the peak heights and areas.

Our mixture analysis used the mixed DNA profile data d, along
with the reference profile genotype gA. We implemented the LMA
heuristic search algorithm in MATLAB (The MathWorks, Natick,

MA), and analyzed the data on a Macintosh PowerBook G3 (Apple
Computer, Cupertino, CA). We applied the automated heuristic al-
gorithm to each data case, with the program searching for local
minima to compute the mixture weight w and the unknown geno-
type profile gB. The computation time for each problem was less
than 0.1 s. We recorded the total deviation dev(gB), along with the
deviations at each locus and allele. We also compared our com-
puted profile with the actual profile for individual B. (While known
in advance for assessment purposes, neither the mixture weight w
nor B’s profile were used in the calculations.)

For each mixture proportion, for both height and area, the com-
puted mixture weights and sum of squares deviations (between the
estimated and actual genotypes) are shown (Table 2). There is good
agreement between the estimated weights and the known propor-
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TABLE 2—The DNA mixtures were combined in the proportions shown,
and the DNA profiles were generated. For each proportion, the

quantitative peak heights and areas were measured. From these data, the
mixture weight and sum of squares deviation from the correct answer

were computed.

Known
Derived Weight and Profile Deviations

Proportions (Height) (Area)

A:B % Weight Sq Dev Weight Sq Dev

1:9 10% 10.9% 0.0900 9.5% 0.1142
3:7 30% 29.3% 0.1112 29.2% 0.1000
5:5 50% 48.0% 0.3222 48.4% 0.2493
7:3 70% 69.2% 0.5303 69.5% 0.4111
9:1 90% 84.6% 4.3907 86.0% 6.3853

FIG. 1—Five curves are shown, each plotting the squared deviation against the mixture weight w. From left to right, these curves correspond to the
heuristic functions of the 1:9 (plus), 3:7 (solid), 5:5 (cross), 7:3 (dash), and 9:1 (dot) mixture ratios. The minima of these curves are located near 10%,
30%, 50%, 70%, and 90%, respectively, demonstrating that mixture deconvolution correctly infers the true mixture weight. The shape of the 9:1 (dot) curve
reflects the trajectory through allele space as the weight changes from 0 to 1.
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tions. When the unknown proportion (B) becomes small (e.g., at
10% in the 9:1 case), the low relative signal can lead to less certain
results, as measured by the deviation.

We examine the data analysis for the 3:7 (30% A to 70% B) case
in more detail. Using peak area data, the search (Fig. 1) for weight
w by minimization of dev(g(w)) gave a weighting of 29.18%; this
value is close to the true 30% DNA mixture. The total sum of
squares deviation dev(g(w)) of the computed genotype from the
closest (and correct) feasible solution was 0.1000. A summary dia-
gram (Fig. 2) shows the locus-by-locus profiles in separate rows for
(1) the mixture data d, (2) the reference profile gA, and (3) the nu-
merically derived unknown profile gB. Quality assessment of the
computed profile gB shows uniform peak heights that are consis-
tent with a correct genotype.

Data and results are tabulated for each locus (Table 3). “Mix-
ture” is the normalized peak quantity data from the mixed sample.
“Geno A” is the known genotype of individual A. “Profile” is the
numerical estimate of B’s genotype computed by the mixture de-
convolution heuristic search algorithm. “Geno B” is the resulting
integer genotype (and, in this case, identical to B’s actual genotype)
obtained by rounding Profile to the nearest integer. “Sq Devs” are
the sum of squares deviations of the Profile from Geno B. Exami-

nation of the squared deviation components for each allele revealed
no major outliers. The largest within-locus sum of squares devia-
tion was the nominal value 0.0272 at locus D2S1338; this locus has
relatively long DNA fragment lengths, which is consistent with
finding larger variation.

We applied our automation methods to data from other laborato-
ries, obtaining accurate results. For example, we reanalyzed the
original six locus STR data (provided by Dr. Peter Gill) underlying
the quantitative analysis of mixture sample MT/NO in (3). Taking
individual MT as the known reference profile, for each approxi-
mate mixing ratio (1:10, 1:5, 1:2, 1:1, 2:1, 5:1, 10:1), we derived
exact mixture weights and estimated individual NO’s genotype.
The respective computed weights (10.02%, 13.83%, 27.87%,
41.89%, 58.43%, 77.25%, 86.66%) are in close agreement with the
four allele locus weights that the authors had estimated (Table 6 for
5 ng DNA in (3)).

To assess three person mixture deconvolution, we analyzed three
anonymous human DNA samples (A, B and C) in different mixture
proportions. We generated SGMplus STR data on these mixed
samples using the protocols described above, and recorded the
peak measurements (height, area, size, and designation). The (very
approximate) 4:1:1 DNA combination experiment generated 44 al-

FIG. 2—The quantitative data d of the 3:7 mixture experiment is shown at every SGMplus locus (first row). Also shown is the known reference profile
of individual a (second row). Using mixture deconvolution, the computer estimates the unknown genotype b (third row) and the mixture weight w. Note that
the estimated genotype is the same as the actual genotype b (fourth row).



leles across the 10 STR loci. Specifying all three known genotypes,
we estimated the true mixture weights using LMA, and determined
that the weights were wA � 70.56%, wB � 11.43%, and wC �
18.01%.

We then performed mixture deconvolution on the three person
mixture data d. We used genotypes gA and gB as known references,
but left genotype gC (and the mixture weights) as unknown pa-
rameters. Mixture deconvolution explored the 44 dimensional al-

lele measurement space by searching for the best two dimensional
(wA, wB) weighting pair, and estimated the weights as wA � 70%,
wB � 11%, and wC � 19%. This weighting result is in good agree-
ment with the “all knowns” calculation, and suggests that LMA
may be useful on data containing more than two contributors.

Other Analyses

Stutter peaks are often a concern in mixture analysis. One clean
analysis method is to mathematically remove the stutter artifact
from the quantitative signal using stutter deconvolution methods
(8) prior to the mixture analysis. Other forensic scientists have used
Bayesian approaches to account for stutter (9). However, direct
stutter removal from the data signal can be highly robust, since it is
working directly at the level of the stutter artifact prior to any mix-
ture computation.

In the reporting of mixture analysis, some courts are interested
in likelihood ratio formulations. Bayesian methods have been de-
veloped to provide such likelihoods (2). However, these reporting
methods require a reasonable estimate of the conditional probabil-
ity Prob(d|G, w) of the observed mixture data, given an hypothe-
sized genotype and mixture weight. Our LMA can help supply such
estimates, since the linear algebra provides a geometric framework
for measuring the Euclidean distance ||d � G � w|| or its square
(which is the sum of squares deviation) between an observed mix-
ture profile d, and a profile estimate G � w. One can compute the
requisite conditional probabilities by correlating these distances
with genotype correctness on empirical mixture data, or by using
linear statistical models (4).

The LMA model is also useful for resolving mixtures when there
are no reference profiles available. In this situation, the computer
considers all feasible genotype pairs Hi at a locus subset, and then
determines the weight w (and genotype pair Hi) that provides the
best possible fit to the data by minimizing ||d � Hi � w||. Progress-
ing in this way from the most informative loci (e.g., those with the
most alleles in their data), the computer can ascertain the full geno-
type profiles of both individuals.

Once large DNA databases have been constructed, there will be
an alternative LMA approach to resolving mixtures without refer-
ence profiles. With such a database, one could iterate through an
entire convicted offender database, testing each offender profile in
turn as a possible gA, and then compute gB. If a gB profile of suf-
ficient quality were derived, this could implicate both individuals
(having DNA profiles gA and gB) as the contributors to the mix-
ture. In this way, the mathematical LMA method, coupled with
knowledge of criminal profiles from a database, would effectively
search for the individual component profiles.

Conclusion

STR profiling of human DNA is proving to be an effective
mechanism for reducing crime. However, DNA mixtures have be-
come a key bottleneck impeding the rapid resolution of cases. In-
terestingly, the underlying PCR amplification step, as well as the
fluorescent detection step, show a quantitatively linear response in
the presence of DNA mixtures. This suggests the use of linear al-
gebraic models to explain mixture problems and compute their so-
lutions.

We have introduced linear mixture analysis (LMA), a straight-
forward mathematical method for resolving DNA mixture prob-
lems. The underlying linear mathematics permits rapid and robust
solutions on real quantitative data. LMA uses all the data in a sin-
gle combined computation, which contributes to its robustness and

PERLIN AND SZABADY • LINEAR MIXTURE ANALYSIS 1377

TABLE 3—The detailed quantitation results for a 3:7 mixture of two
DNA samples processed with the SGMplus panel. The computed profile

(Profile) is a reasonable numerical estimate of the actual genotype (Geno
B), as indicated by the small sum of squares deviations (Sq Dev) listed.

Deviations are listed for alleles, loci (subtotals, shown in italics), and the
sample (grand total, shown in bold). Please refer to the text for a detailed

description of the other quantitites shown.

Geno Geno
Locus-Allele Mixture A Profile B Sq Dev

D3S1358-14 1.0365 1 1.0516 1 0.0027
D3S1358-15 0.9635 1 0.9484 1 0.0027

0.0053

vWA-17 1.4755 0 2.0835 2 0.0070
vWA-18 0.5245 2 �0.0835 0 0.0070

0.0140

D16S539-11 1.4452 0 2.0406 2 0.0017
D16S539-13 0.2889 1 �0.0041 0 0.0000
D16S539-14 0.2660 1 �0.0365 0 0.0013

0.0030

D2S1338-16 0.3190 1 0.0384 0 0.0015
D2S1338-18 0.6339 0 0.8951 1 0.0110
D2S1338-20 0.3713 1 0.1122 0 0.0126
D2S1338-21 0.6758 0 0.9543 1 0.0021

0.0272

D8S1179-9 0.7279 0 1.0278 1 0.0008
D8S1179-12 0.2749 1 �0.0239 0 0.0006
D8S1179-13 0.6813 0 0.9620 1 0.0014
D8S1179-14 0.3160 1 0.0341 0 0.0012

0.0040

D21S11-27 0.2787 1 �0.0185 0 0.0003
D21S11-29 0.7876 0 1.1121 1 0.0126
D21S11-30 0.9337 1 0.9064 1 0.0088

0.0217

D18S51-12 0.3443 1 0.0741 0 0.0055
D18S51-13 0.6952 0 0.9816 1 0.0003
D18S51-14 0.6755 0 0.9538 1 0.0021
D18S51-17 0.2850 1 �0.0096 0 0.0001

0.0081

D19S433-12.2 0.6991 0 0.9872 1 0.0002
D19S433-14 0.6060 2 0.0316 0 0.0010
D19S433-15 0.6949 0 0.9813 1 0.0004

0.0015

THO1-6 0.3178 1 0.0366 0 0.0013
THO1-7 1.0074 1 1.0104 1 0.0001
THO1-9 0.6749 0 0.9530 1 0.0022

0.0037

FGA-19 1.0580 1 1.0819 1 0.0067
FGA-24 0.2830 1 �0.0124 0 0.0002
FGA-25.2 0.6589 0 0.9304 1 0.0048

0.0140
0.1000
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accuracy—the method is unlikely to find an incorrect solution.
Moreover, heuristic algorithms based on LMA have built-in ap-
proaches for determining error, identifying suspect loci, and estab-
lishing confidence.

Under reasonable PCR conditions, multiplex STR data appear to
demonstrate linear additivity, once DNA concentrations have been
renormalized within each locus. Our linear analysis of each exper-
iment produced a mixture weight having only small deviations
across the loci. Based on 6-plex STR data, others have conjectured
that DNA mixtures amplify linearly (3); our 10-plex data and lin-
ear analysis concur. Ongoing experimentation will assess the lin-
earity of newer multilocus multiplex panels.

LMA may see broad application in rape cases. Applying the
LMA-based mixture deconvolution method to the mixed DNA
crime profile, together with a reference profile from the victim, may
enable rapid and automated determination of the perpetrator’s DNA
profile. When coupled with the anticipated large offender DNA
databases, perpetrator identities could be revealed in a matter of
hours. This technological “DNA surveillance” capability may have
a deterrent effect on some subpopulation of potential offenders.
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